

Tripartite Interactions of Moored Deformable Body in Random Waves

Stress Resultants & Full Load-Mapping

Dr. HeonYong Kang Oct 26, 2017 Ocean System Simulation and Control Laboratory

Offshore Hydroelasticity: Examples

• Larger moored offshore structures

• Large deformation

Harsher environment

Reference : courtesy of ExxonMobil (Kizomba) Shell (Prelude) , Pelamis, Shell Kulluk, and JTC

Keywords & Objective

✓ To develop the new methodology solving tripartite interactions of deformable or rigid floating body, nonlinear mooring system and random waves.

- ✓ The new methodology provides with real-time stress resultants and full load-mapping without costly CFD or time-domain fluid solver.
- ✓ Identify mooring effects to stress resultants and elastic motions.

Conventional Global Performance Analysis

- ✓ Obtain motion responses of the floating bodies, structural responses of the mooring-riser system in the random sea.
- ✓ Either full-load mapping or calculation of coupled stress resultants requires costly CFD or Hydroelastic Analysis even for the rigid bodies.

What is New?

- ✓ Solve tripartite interactions of the deformable floating body dynamics, nonlinear mooring-riser system dynamics, and random waves.
- ✓ Obtain coupled stress resultants (shear forces, bending moments, torsional moments).
- ✓ Provide with full load-mapping without CFD or other costly time-domain fluid dynamics solvers.

What is New if Deformation of the Floating Body is Negligible?

Contrary to existing numerical tools,

- ✓ The new methodology also provides with the coupled stress resultants on rigid-assumed floating bodies even without hydroelasticity.
- ✓ The new methodology also provides with the fully load-mapping on rigid-assumed floating bodies without the CFD or other fluid dynamics solvers.

What Else is New?

✓ The new method is also applicable to multi-body problem which consists of some deformable floating bodies and other rigid floating bodies in coupling by mooring lines and risers.

Offshore Hydroelasticity: Schematic View

 Since it's built based on conventional global performance analysis, identical accuracy still holds in the hydroelastic responses and full load mapping.

Numerical Study of a Elastic Slender Pontoon with a mooring system

• Schematic View

- O Quarter El case
- O 4 taut vertical mooring lines
- O Water depth 125 m
- O Sea state 5 applied

Line length	120 m	
Wet, Dry weight	24.79, 29.01 kg/m	
Axial stiffness (EA)	3.53337E+08 N	
Bending stiffness (EI)	1.37824E+05 Nm ²	
Diameter	0.079 m	
Ca, Cd	1, 1.5	

Exemplary Final Results

More Accurate Natural Frequencies by Numerical Hammer Test

True natural frequencies by hammer test

Condition	Elastic mode #1	Elastic mode #2
Wet moored	1.59	2.88
Wet freely floating	1.44	2.82
Dry	1.25	3.44

Resonated Deformation of Floating Body by Mooring Tension

Offshore Hydroelasticity: Real Scale FLNG

Parametric Hydroelastic Dynamic Analysis

• Coupled Deformations and Resonances

Offshore Hydroelasticity: Key Results VI

• Stress resultants (V) interacting with mooring lines

Shear force (freely floating)

Shear force (original stiff mooring)

Shear force (less stiff mooring)

Shear force (more stiff mooring)

Offshore Hydroelasticity: Key Results VII

• Stress resultants (M) interacting with mooring lines

Bending moment (freely floating)

Bending moment (original stiff mooring)

Bending moment (less stiff mooring)

Bending moment (more stiff mooring)

Potential Prospective Study I: Coupled Stress Resultants for SEMI or FPSO or Other Offshore Platforms

Potential Prospective Study II: Sloshing-coupled Hydroelastic Analysis for FPSO/FLNG

Potential Prospective Study III: Hybrid-Hydroelastic Analysis for Various Offshore Platforms

Conclusion

- The coupled hydroelastic analysis solves tripartite interactions of a fully or partially deformable floating body, nonlinear mooring dynamics, and random waves.
- It provides motion responses including deformation and dynamic stress resultants for both of the floating body and mooring system.
- It provides real-time full load mapping for either deformable or rigid floating body moored in the random seas without costly CFD.